Password reminder
Contact the editor Visit NeuroNews Twitter feed Visit NeuroNews Facebook page

The current role of temporary endovascular bypass in acute stroke

Thursday, 17 May 2012 10:18

By Maxim Mokin, Elad I Levy and Tareq Kass-Hout

Over the last decade, we have witnessed rapid advancement of endovascular techniques for acute ischaemic stroke treatment. Accumulating evidence from studies testing both intravenous and intra-arterial revascularisation approaches clearly demonstrates that improved outcomes are directly associated with our ability to achieve early successful recanalisation of the occluded vessels. Our initial experience with mechanical thrombectomy using the Merci retriever device and the Penumbra aspiration system showed higher recanalisation rates, when comparing the results to historical controls from the Prolyse in Acute Cerebral Thromboembolism (PROACT) II trial of intra-arterial pharmacological thrombolysis. Still, both thrombectomy approaches have been criticised for higher rates of complications (namely, intracranial haemorrhage) and high mortality rates as well as technical complexity; moreover, neither device was able to demonstrate 100% recanalisation rates in major trials.

The use of intracranial stents for acute stroke revascularisation was originally attempted as “the last resort” approach when stroke interventionists faced challenging cases refractory to pharmacological and mechanical intra-arterial manipulations.

Several centres began to use first balloon-mounted stents and later self-expandable stents and soon realised that stenting allowed robust restoration of blood flow. Instead of a rescue therapy, stenting was now considered a first-line treatment.

Closed-cell stents allow partial expansion and recapture (re-sheathing), creating a concept called “temporary endovascular bypass”. In this technique, a stent is temporarily deployed, achieving instant recanalisation. The theory behind this approach is that the radial force generated during stent expansion disrupts the thrombus and plasters it against the vessel wall, allowing robust restoration of blood flow to the ischaemic brain. Restored blood flow potentiates the endogenous thrombolytic system, which can be further enhanced by pharmacological agents, such as recombinant tissue plasminogen activator (rtPA) or glycoprotein IIb/IIIa inhibitors, administered locally via a microcatheter injection. Once sufficient blood flow is established, which can assessed with serial angiographic injection runs, the stent is recaptured. The fundamental difference of the “temporary endovascular bypass” approach from Penumbra aspiration thrombectomy or Merci mechanical thrombectomy is the ability to establish instant recanalisation. Therefore, during the time it takes for the endogenous thrombolytic system to lyse the clot, the affected brain territory receives full blood supply.

The obvious advantage of recapturing and removing the stent, rather than permanently deploying it, is avoiding the need for dual antiplatelet therapy, which is mandatory for patients in whom an intracranial stent is implanted. Patients with large strokes are at high risk for reperfusion haemorrhage, and the dual antiplatelet therapy would certainly elevate such risk. This issue can become of even more concern in patients with atrial fibrillation (which is a frequent cause of large vessel occlusion), given the requirement for long-term anticoagulation agents. Also, patients with permanently placed intracranial stents are at risk for in-stent restenosis.

The obvious concern for the temporary endovascular bypass concept is that complete thrombus dissolution might not be achieved when relying on the endogenous thrombolytic system alone. The use of additional pharmacological agents would carry risk for intracranial haemorrhage. Although clot disruption and augmented blood flow as a result of temporary stent placement are powerful facilitators of the process of thrombus lysis, larger thrombus load and time-dependent thrombus organisation in patients with stroke presenting after several hours of symptom onset would make the temporary endovascular bypass approach alone prone to recurrent thrombosis.

These limitations have been successfully overcome by combining the concept of temporary endovascular bypass with thrombus extraction using stent-retrieval technology. The stent-retriever is used not only to establish immediate blood flow but also as a capture device and is retracted into a guide catheter with the thrombus trapped within the stent walls. Efficacy, safety, and superiority of this approach in comparison to earlier-generation mechanical thrombectomy with the Merci device were recently demonstrated in the Solitaire FR With the Intention For Thrombectomy (SWIFT) trial. The trial was stopped nearly one year before the anticipated finish date because of clear evidence of superiority of the Solitaire device.

In our opinion, the concept of temporary endovascular bypass is fundamental to the success of the stentriever approach to acute stroke treatment. Establishing early blood flow is key in preserving brain from irreversible ischaemic damage. Undoubtedly, endovascular therapies for rapid recanalisation of occluded vessels have already demonstrated improved clinical efficacy and safety and will continue to rapidly evolve, leading to improved outcomes in patients with acute stroke.

Maxim Mokin and Tareq Kass-Hout are Stroke fellows, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA. Mokin reports no financial relationships. Kass-Hout has received an educational research grant from Genentech.

Elad I Levy is professor of Neurosurgery and Radiology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA. He receives research grant support (principal investigator: Stent-Assisted Recanalization in acute Ischemic Stroke, SARIS), other research support (devices), and honoraria from Boston Scientific* and research support from Codman & Shurtlef and ev3/Covidien Vascular Therapies; has ownership interests in Intratech Medical and Mynx/Access Closure; serves as a consultant on the board of Scientific Advisors to Codman & Shurtlef; serves as a consultant per project and/or per hour for Codman & Shurtleff, ev3/Covidien Vascular Therapies, and TheraSyn Sensors; and receives fees for carotid stent training from Abbott Vascular and ev3/Covidien Vascular Therapies. He receives no consulting salary arrangements. All consulting is per project and/or per hour. (*Boston Scientific’s neurovascular business has been acquired by Stryker)

Add New Comment

Related Items

Most popular

ROADSTER trial studying new path to carotid revascularisation completes patient enrolment
Friday, 18 Jul 2014
The trial was the first of its kind to study the treatment of carotid artery stenosis by placing a stent via direct access to the common carotid artery in the neck in an entirely new minimally ... ROADSTER trial studying new path to carotid revascularisation completes patient enrolment

Written emergency stroke care protocols may improve hospital performance
Wednesday, 06 Aug 2014
New data presented at the Society of NeuroInterventional Surgery (SNIS) 11th Annual Meeting in (28 –31, Colorado Springs, USA) helps prove that written care protocols can significantly improve the ... Written emergency stroke care protocols may improve hospital performance

Friday, 01 Aug 2014
New technology in the form of a magnetically-assisted remote-controlled catheter (MARC) which could allow physicians to see and assess brain tissue more clearly while treating a stroke may hold ... New technology may improve visualisation of the brain during stroke treatment


Neuro-oncologic treatment for glioblastoma
Monday, 21 Jul 2014
Malignant gliomas are the most common type of primary malignant brain tumour, accounting for 80% of patients and an annual incidence of 5.26 per 100,000 population, or 17,000 new cases diagnosed per ... Neuro-oncologic treatment for glioblastoma

Early brain stimulation may help stroke survivors recover language function
Monday, 21 Jul 2014
Dieter Heiss, who presented on early brain stimulation for stroke patients at the 8th World Congress on Controversies in Neurology (CONy), 8–11 May, Berlin, Germany, writes for NeuroNews on how this ... Early brain stimulation may help stroke survivors recover language function


Mauricio Castillo
Monday, 14 Jul 2014
Mauricio Castillo is a professor of Radiology and chief, Division of Neuroradiology, University of N... Mauricio Castillo

William T Couldwell
Thursday, 24 Apr 2014
William T Couldwell is professor of neurosurgery in the Department of Neurological Surgery, U... William T Couldwell

Cardiac Rhythm News Vascular News Cardiovascular News Interventional News Spinal News NeuroNews
BIBA Medical BIBA MedTech Insights CX Symposium ilegx
Password Reminder

BIBA Medical, 526 Fulham Road, Fulham, London, SW6 5NR.
TEL: +44 (0)20 7736 8788 FAX: +44 (0)20 7736 8283 EMAIL: 
© BIBA Medical Ltd is a company registered in England and Wales with company number 2944429.
VAT registration number 730 6811 50.
Site Map | Terms and Conditions